Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
01 DEC 1996

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLEAND SUBTITLE

Provably Secure Programming L anguages for Remote Evaluation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department Naval Postgraduate School Monterey, CA

93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT
unclassified unclassified

c. THISPAGE
unclassified

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

3

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Provably-Secure Programming Languages
for Remote Evaluation

Dennis Volpano

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943, USA

Remote evaluation and dynamically-extensible systems pose serious safety and security risks.
Programming language design has a major role in overcoming some of these risks. Important
research areas include designing suitable languages for remote evaluation, identifying appropriate
security and safety properties for them, and developing provably-sound logics for reasoning about
the properties in the context of separate compilation and dynamic linking.

Recently, there has been phenomenal growth in the use of the Internet, driven in
part by HTTP servers that make up the World Wide Web and new programming
languages like Java [5]. This has rekindled interest in an area that Stamos and
Gifford termed remote evaluation [12]. In this paradigm, a client sends a procedure
to a server to execute on its behalf. The server executes the procedure and returns
the results to the client. This differs from remote procedure call (RPC) and other
forms of gateway programming which are examples of server-side programming, not
remote evaluation.

Various languages have been proposed to support the paradigm. Among them
are distributed dialects of Scheme [4; 7], Tel (Safe-Tel) which grew out of active
messaging [2], Oblig [3] and General Magic’s Telescript(tm) [14]. Sun’s Java is also
aimed at remote evaluation but from a slightly different perspective. With Java, a
procedure in byte-code form, called an Applet, is downloaded from a Web server
and executed within a browser on the client’s machine.

It has long been widely known that there are serious security risks associated with
remote evaluation. By security, we mean server privacy, integrity and availability.
Remote procedures that execute with server privileges and have access to server
resources can compromise security. This is a real threat to the future of Internet
computing and dynamic extensibility in OS kernels and active networks.

Though attention has been given to security issues in this setting, they have not
been treated with anywhere near the rigor found in other areas of security such
as encryption. Languages like Obliq, Netscape’s JavaScript and Java have not been
carefully designed from a security point of view. As new holes are discovered, they
are patched, but it is not clear that this process will ever converge. One can never
be sure that executing programs in these languages will not compromise security
in some way. As a result, browsers tend to be quite paranoid when it comes to
executing remote code. They implement rather restrictive security policies that
prevent all but very anemic applications from being executed remotely.



2 . Dennis Volpano

1. SECURITY PROPERTIES FOR PROGRAMMING LANGUAGES

Many security issues in remote evaluation can actually be addressed through careful
and systematic programming language design. What is needed is a provably-secure
programming language, one whose design is guided by a need to preserve some set
of explicitly-stated security properties. But what kinds of security properties do we
want programs to have? First, we might expect the language to be, in some sense,
safe. That 1s, 1t should have features that promote robust code and avoid accidents,
unlike C. We want a precise characterization of how a well-typed program can be-
have when executed. New formulations of type soundness are needed for imperative
programming languages that specify all possible errors that can cause well-typed
programs to abort according to the semantics. Traditional type soundness argu-
ments merely rule out well-typed programs from evaluating to a special type-error
value. These new formulations will force one to identify, in the semantics, vari-
ous points where program execution should abort, for example, when attempting
to dereference a dangling pointer. The idea is that a safe implementation of the
language would then be required to detect these points. An open question is what
features can a programming language have that allow it to be implemented safely
and efficiently?

For other security properties, we can look to security models for information
flow in multi-level systems [9; 10; 11]. Various models such as, Noninterference [6],
Separability [10] and Restrictiveness [8] have been proposed. They are basically
properties of multi-level systems that say high-level system inputs do not interfere
with low-level system outputs. FEach security model offers a different notion of
security. The Noninterference model, for example, addresses protection for program
inputs only and 1s not a property of nondeterministic programs. It may be too weak
in some cases. Consider programs that generate cryptographic keys, for example.
They are expected to convert low-level input seeds into high-level output keys.
Noninterference would not be concerned with whether these keys wound up being
low-level outputs. Separability, on the other hand, is a stronger notion of security
and is a property of nondeterministic programs. However, its weakness is that
it prohibits upward information flow from low-level inputs to high-level outputs,
making 1t unsuitable for some applications. An important research direction is to
identify an appropriate set of security properties for remote evaluation languages.

2. PROOF SYSTEMS FOR SECURITY PROPERTIES

It should be possible to enforce a set of desired security properties through a proof
system for the language. Of course, whether the properties are enforced by the
proof system must be shown through a soundness theorem which is stated with
respect to the language’s semantics. The theorem guarantees that all programs
that have proofs in the system have the desired security property. For instance,
a proof system has been designed to enforce Noninterference in a deterministic,
block-structured language and has been proved sound [13]. The proof system is
formulated as a type system so that well-typed programs have the Noninterference
property. Depending on the security model and programming language, getting a
provable formulation of soundness can be tricky. For example, Banatre et al. give
an information flow logic for a nondeterministic language [1]. However, in order



Secure Languages for Remote Evaluation . 3

for their formulation of soundness (Proposition 1, pg. 58) to be true, the flow logic
must be changed [13]. There are also algorithmic issues surrounding such proof
systems. Is a particular proof system decidable? If so, can it be decided efficiently?

The future of Internet computing and extensible systems holds great promise.

A key to its success is security, and provably-secure programming language design
will have a major role.

REFERENCES

(1]

(12]
(13]

(14]

Banatre, J., Bryce, C. and Le Métayer, D., Compile-time Detection of Information Flow in
Sequential Programs, Proc. 3rd European Symposium on Research in Computer Security,
pp. 55-73, 1994,

Borenstein, N., Email with a Mind of its Own: The Safe-Tcl Language for Enabled Mail,
Available at ftp://ics.uci.edu/mrose/safe-tcl/safe-tcl.tar.Z, 1994.

Cardelli, L. A Language with Distributed Scope, Proc. 22nd ACM Sympostum on Principles
of Programming Languages, pp. 286-297, 1995.

Cejtin, H. Jagannathan, S. and Kelsey, R., Higher-order Distributed Objects, ACM Trans.
on Programming Languages and Systems, 17(5), pp. 704-739, 1995.

Flanagan, D., Java in a Nutshell, O'Reilly and Associates, Inc.

Goguen, J. and Meseguer, J., Security Policies and Security Models, Proc. 1982 IEEE Sym-
posium on Research in Security and Privacy, pp. 11-20, 1982.

Halls, D., Bates, J. and Bacon, J., Flexible Distributed Programming using Mo-
bile Code, Proceedings of the 1996 SIGOPS Furopean Workshop on Systems Sup-
port for Worldwide Applications, Connemara, Ireland, September 1996, Available at
http://mosquitonet.stanford.edu/sigops96/papers.

McCullough, D., Specifications for Multi-level Security and a Hook-Up Property, Proc. 1987
IEEE Symposium on Research in Security and Privacy, pp. 161-166, 1987.

McLean, J., The Specification and Modeling of Computer Security, IEEE Computer, 23(1),
pp. 9-16, 1990.

McLean, J., Security Models and Information Flow, Proc. 1990 IEEE Symposium on Re-
search in Security and Privacy, pp. 180-187, 1990.

McLean, J., A General Theory of Composition for Trace Sets Closed Under Selective Inter-
leaving Functions, Proc. 1994 IEEE Symposium on Research in Security and Privacy,
pp. 79-93, 1994.

Stamos, J. and Gifford, D., Remote Evaluation, ACM Trans. on Programming Languages
and Systems, 12(4), pp. 537-565, 1990.

Volpano, D., Smith, G. and Irvine, C., A Sound Type System for Secure Flow Analysis,
Journal of Computer Security, 4(3), pp. 1-21, 1996.

White, J., Telescript Technology: The Foundation for the Electronic Marketplace, Technical
Report, General Magic, Inc., 1994.



